Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.110
1.
Braz J Biol ; 84: e276323, 2024.
Article En | MEDLINE | ID: mdl-38597517

Nitrogen compounds, particularly ammonium, nitrite and nitrate, are a major problem in shrimp production systems. These compounds can accumulate in the aquatic environment and reach harmful or even lethal levels. Thus, monitoring the levels of nitrogenous compounds such as ammonia and studying their effects on the animals are essential. One tool used for this purpose is acute toxicity testing based on the evaluation of LC50 values. Furthermore, tools that can help improve the performance of aquatic organisms in culture are needed. The present study aimed to evaluate the effect of salinity on the toxicity of total ammonia to postlarvae of the freshwater prawn Macrobrachium rosenbergii. For this purpose, acute toxicity testing (LC50-96h) was performed using 540 postlarvae with a mean weight of 0.13 g and a mean total length of 2.47 cm, divided into 54 experimental units of two liters each. A completely randomized design in a 3×6 factorial scheme was used, combining three salinities (0, 5, and 10 g.L-1) and six total ammonia concentrations (0, 8, 16, 32, 64, and 128 mg.L-1), with three replicates per combination. The LC50 values for M. rosenbergii postlarvae at 24, 48, 72, and 96 h and their respective confidence intervals (95%) were estimated using the trimmed Spearman-Karber method. The results showed that salinities of 5 or 10 g.L-1 did not reduce the acute toxicity of total ammonia.


Ammonia , Palaemonidae , Animals , Ammonia/toxicity , Salinity , Nitrites , Nitrates
2.
Environ Pollut ; 349: 123956, 2024 May 15.
Article En | MEDLINE | ID: mdl-38626866

Ammonia-N, as the most toxic nitrogenous waste, has high toxicity to marine animals. However, the interplay between ammonia-induced neuroendocrine toxicity and intestinal immune homeostasis has been largely overlooked. Here, a significant concordance of metabolome and transcriptome-based "cholinergic synapse" supports that plasma metabolites acetylcholine (ACh) plays an important role during NH4Cl exposure. After blocking the ACh signal transduction, the release of dopamine (DA) and 5-hydroxytryptamine (5-HT) in the cerebral ganglia increased, while the release of NPF in the thoracic ganglia and NE in the abdominal ganglia, and crustacean hyperglycemic hormone (CHH) and neuropeptide F (NPF) in the eyestalk decreased, finally the intestinal immunity was enhanced. After bilateral eyestalk ablation, the neuroendocrine system of shrimp was disturbed, more neuroendocrine factors, such as corticotropin releasing hormone (CRH), adrenocorticotropic-hormone (ACTH), ACh, DA, 5-HT, and norepinephrine (NE) were released into the plasma, and further decreased intestinal immunity. Subsequently, these neuroendocrine factors reach the intestine through endocrine or neural pathways and bind to their receptors to affect downstream signaling pathway factors to regulate intestinal immune homeostasis. Combined with different doses of ammonia-N exposure experiment, these findings suggest that NH4Cl may exert intestinal toxicity on shrimp by disrupting the cerebral ganglion-eyestalk axis and the cerebral ganglion-thoracic ganglion-abdominal ganglion axis, thereby damaging intestinal barrier function and inducing inflammatory response.


Ammonia , Penaeidae , Animals , Penaeidae/immunology , Penaeidae/drug effects , Penaeidae/metabolism , Ammonia/toxicity , Intestines/drug effects , Water Pollutants, Chemical/toxicity , Dopamine/metabolism , Nitrogen/metabolism , Acetylcholine/metabolism , Neurosecretory Systems/drug effects , Arthropod Proteins/metabolism
3.
Chemosphere ; 353: 141580, 2024 Apr.
Article En | MEDLINE | ID: mdl-38430943

Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.


Amides , Ammonium Compounds , Pyrazines , Sewage , Ammonia/toxicity , Ammonia/metabolism , Rivers , Oxidation-Reduction , Nitrous Acid , Biotransformation , Antiviral Agents/toxicity , Bioreactors , Nitrites
4.
Ecotoxicol Environ Saf ; 273: 116160, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38432157

High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.


Ammonia , Cypriniformes , Animals , Ammonia/toxicity , Ammonia/metabolism , Lakes , Membrane Transport Proteins/metabolism , Alkalies , Gills/metabolism
5.
Poult Sci ; 103(5): 103622, 2024 May.
Article En | MEDLINE | ID: mdl-38513550

Ammonia (NH3) is a toxic gas that in intensive poultry houses, damages the poultry health and induces various diseases. This study investigated the effects of NH3 exposure (0, 15, 30, and 45 ppm) on growth performance, serum biochemical indexes, antioxidative indicators, tracheal and lung impairments in Pekin ducks. A total of 288 one-day-old Pekin male ducks were randomly allocated to 4 groups with 6 replicates and slaughtered after the 21-d test period. Our results showed that 45 ppm NH3 significantly reduced the average daily feed intake (ADFI) of Pekin ducks. Ammonia exposure significantly reduced liver, lung, kidney, and heart indexes, and lowered the relative weight of the ileum. With the increasing of in-house NH3, serum NH3 and uric acid (UA) concentrations of ducks were significantly increased, as well as liver malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPX-Px) contents. High NH3 also induced trachea and lung injury, thereby increasing levels of tumor necrosis factor-α (TNF-α) and interleukin-4 (IL-4) in the lung, and decreasing the mRNA expressions of zonula occludens 1 (ZO-1) and claudin 3 (CLDN3) in the lung. In conclusion, in-house NH3 decrease the growth performance in ducks, induce trachea and lung injuries and meanwhile increase the compensatory antioxidant activity for host protection.


Ammonia , Ducks , Oxidative Stress , Poultry Diseases , Animals , Ducks/physiology , Ducks/growth & development , Ammonia/toxicity , Ammonia/metabolism , Male , Oxidative Stress/drug effects , Poultry Diseases/chemically induced , Poultry Diseases/metabolism , Random Allocation , Housing, Animal , Dose-Response Relationship, Drug
6.
Sci Total Environ ; 924: 171576, 2024 May 10.
Article En | MEDLINE | ID: mdl-38461997

Ammonia pollution is an important environmental stress factors in water eutrophication. The intrinsic effects of ammonia stress on liver toxicity and muscle quality of rainbow trout were still unclear. In this study, we focused on investigating difference in muscle metabolism caused by metabolism disorder of rainbow trout liver at exposure times of 0, 3, 6, 9 h at 30 mg/L concentrations. Liver transcriptomic analysis revealed that short-term (3 h) ammonia stress inhibited carbohydrate metabolism and glycerophospholipid production but long-term (9 h) ammonia stress inhibited the biosynthesis and degradation of fatty acids, activated pyrimidine metabolism and mismatch repair, lead to DNA strand breakage and cell death, and ultimately caused liver damage. Metabolomic analysis of muscle revealed that ammonia stress promoted the reaction of glutamic acid and ammonia to synthesize glutamine to alleviate ammonia toxicity, and long-term (9 h) ammonia stress inhibited urea cycle, hindering the alleviation of ammonia toxicity. Moreover, it accelerated the consumption of flavor amino acids such as arginine and aspartic acid, and increased the accumulation of bitter substances (xanthine) and odorous substances (histamine). These findings provide valuable insights into the potential risks and hazards of ammonia in eutrophic water bodies subject to rainbow trout.


Oncorhynchus mykiss , Animals , Oncorhynchus mykiss/physiology , Ammonia/toxicity , Ammonia/metabolism , Liver/metabolism , Muscles/metabolism , Water/metabolism
7.
Mar Environ Res ; 196: 106398, 2024 Apr.
Article En | MEDLINE | ID: mdl-38377938

NH3-N and NO2-N always co-exist in the aquatic environment, but there is not a clear opinion on their joint toxicities to the molluscs. Presently, clams Ruditapes philippinarum were challenged by environmental concentrations of NH3-N and NO2-N, singly or in combination, and analyzed by metabolomics approaches, enzyme assays and transmission electron microscope (TEM) observation. Results showed that some same KEGG pathways with different enriched-metabolites were detected in the three exposed groups within one day, and completely different profiles of metabolites were found in the rest of the exposure period. The combined exposure induced heavier and more lasting toxicities to the clams compared with their single exposure. ACP activity and the number of secondary lysosomes were significantly increased after the combined exposure. The present study shed light on the joint-toxicity mechanism of NH3-N and NO2-N, and provided fundamental data for the toxicity research on inorganic nitrogen.


Bivalvia , Water Pollutants, Chemical , Animals , Nitrites/toxicity , Nitrites/metabolism , Ammonia/toxicity , Ammonia/metabolism , Nitrogen Dioxide/metabolism , Bivalvia/metabolism , Oxidative Stress , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
8.
Sci Total Environ ; 920: 170914, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38354808

Ammonia and microcystin-LR (MC-LR) are both toxins that can be in eutrophic waters during cyanobacterial blooms. While previous studies have focused on the effects of ammonia exposure on fish neurobehavioral toxicity, little attention has been given to the effects of MC-LR and combined exposures to both. This study exposed adult female zebrafish to ammonia (30 mg/L) and MC-LR (10 µg/L) alone and in combination for 30 days to investigate their neurotoxic effects and underlying mechanisms. Behavioral results showed that exposure to ammonia and MC-LR, both alone and in combination, led to decreased locomotor activity and increased anxiety in fish. Histomorphological analysis revealed the formation of thrombi and vacuolization in the brain across all exposure groups. Exposure to ammonia and MC-LR resulted in significant increases in MDA contents, decreases in Mn-SOD activities, and alterations in GSH contents compared to the control. Single and combined exposure to ammonia and MC-LR also induced the release of inflammatory factors (IL-1ß and TNF-α) by activating the NOD/NF-κB signaling pathway. Furthermore, both ammonia and MC-LR significantly changed the expression of genes related to the glutamatergic and GABAergic systems, elevated Glu and GABA contents, as well as increased the Glu/GABA ratio, indicating that a shift towards increased Glu levels. Overall, these findings suggested that exposure to MC-LR and ammonia, individually and in combination, could decrease locomotor activity and increase anxiety of female zebrafish. This was likely due to brain damage from over-activated ROS and the release of pro-inflammatory cytokines, which led to a disruption in the balance of glutamatergic and GABAergic systems. However, there was no significant interaction between MC-LR and ammonia in fish neurobehavioral toxicity.


Marine Toxins , Water Pollutants, Chemical , Zebrafish , Animals , Female , Zebrafish/metabolism , Ammonia/toxicity , Ammonia/metabolism , Reactive Oxygen Species/metabolism , Glutamic Acid/metabolism , Microcystins/toxicity , Microcystins/metabolism , Inflammation/chemically induced , gamma-Aminobutyric Acid/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism
9.
Environ Sci Pollut Res Int ; 31(15): 22380-22394, 2024 Mar.
Article En | MEDLINE | ID: mdl-38407712

As one of the most significant contaminants and stressors in aquaculture systems, ammonia adversely jeopardizes the health of aquatic animals. Ammonia exposure affects the development, metabolism, and survival of shellfish. However, the responses of the innate immune and antioxidant systems and apoptosis in shellfish under ammonia stress have rarely been reported. In this study, razor clams (Sinonovacula constricta) were exposed to different concentrations of non-ion ammonia (0.25 mg/L, 2.5 mg/L) for 72 h and then placed in ammonia-free seawater for 72 h for recovery. The immune responses induced by ammonia stress on razor clams were investigated by antioxidant enzyme activities and degree of apoptosis in digestive gland and gill tissues at different time points. The results showed that exposure to a high concentration of ammonia greatly disrupted the antioxidant system of the razor clam by exacerbating the accumulation of reactive oxygen species ( O 2 - , H2O2) and disordering the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase), and the level of activity remained at a significantly high level after recovering for 72 h (P < 0.05). In addition, there were significant differences (P < 0.05) in the expression of key genes (Caspase 7, Cyt-c, Bcl-2, and Bax) in the mitochondrial apoptotic pathway in the digestive glands and gills of razor clams as a result of ammonia stress and were unable to return to normal levels after 72 h of recovery. TUNEL staining indicated that apoptosis was more pronounced in gills, showing a dose and time-dependent pattern. As to the results, ammonia exposure leads to the activation of innate immunity in razor clams, disrupts the antioxidant system, and activates the mitochondrial pathway of apoptosis. This is important for comprehending the mechanism underlying the aquatic toxicity resulting from ammonia in shellfish.


Antioxidants , Bivalvia , Animals , Antioxidants/metabolism , Ammonia/toxicity , Ammonia/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Bivalvia/metabolism , Apoptosis
10.
Environ Sci Pollut Res Int ; 31(10): 15153-15171, 2024 Feb.
Article En | MEDLINE | ID: mdl-38289553

Excessive ammonia-N in coastal environment and aquaculture threatens the health of marine organisms. To explore the mechanism of gill damage induced by ammonia-N, transcriptome of Litopenaeus vannamei 's gill was carried out under 20 mg/L NH4Cl for 0, 6, and 48 h. K-means clustering analysis suggested that ammonia excretion and metabolism-related genes were elevated. GO and KEGG enrichment analysis suggested that glycosyltransferase activity and amino acid metabolism were affected by ammonia. Moreover, histological observation via three staining methods gave clues on the changes of gill after ammonia-N exposure. Increased mucus, hemocyte infiltration, and lifting of the lamellar epithelium suggested that gill epithelium was suffering damage under ammonia-N stress. Meanwhile, the composition of extracellular matrix (ECM) in connective tissue changed. Based on the findings of transcriptomic and histological analysis, we further investigated the molecular mechanism of gill damage under multiple concentrations of NH4Cl (0, 2, 10, 20 mg/L) for multiple timepoints (0, 3, 6, 12, 24, 48, 72 h). First, ammonia excretion was elevated via ion channel, transporter, and exocytosis pathways, but hemolymph ammonia still kept at a high level under 20 mg/L NH4Cl exposure. Second, we focused on glycosaminoglycan metabolism which was related to the dynamics of ECM. It turned out that the degradation and biosynthesis of chondroitin sulfate (CS) were elevated, suggesting that the structure of CS might be destructed under ammonia-N stress and CS played an important role in maintaining gill structure. It was enlightening that the destructions occurred in extracellular regions were vital to gill damage. Third, ammonia-N stress induced a series of cellular responses including enhanced apoptosis, active inflammation, and inhibited proliferation which were closely linked and jointly led to the impairment of gill. Our results provided some insights into the physiological changes induced by ammonia-N and enriched the understandings of gill damage under environmental stress.


Ammonia , Penaeidae , Animals , Ammonia/toxicity , Ammonia/metabolism , Gills/metabolism , Apoptosis , Gene Expression Profiling , Penaeidae/genetics , Penaeidae/metabolism , Cell Proliferation
11.
Article En | MEDLINE | ID: mdl-38296217

As one of main pollutants, ammonia could cause adverse effects to aquatic animals. To explore the toxic effects of ammonia on Chinese striped-necked turtles (Mauremys sinensis) and invasive species red-eared slider (Trachemys scripta elegans), we compared the activities of antioxidant enzymes, the mRNA levels of genes involved in immune status, endoplasmic reticulum stress and apoptosis between T. s. elegans and M. sinensis under ammonia exposure for 30 days. The results showed that ammonia obviously increased the activities of SOD, CAT, GPX and T-AOC in both T. s. elegans and M. sinensis, especially CAT and GPX in T. s. elegans were higher than that in M. sinensis. The expression levels of JAK, RELA and Mcl-1 in T. s. elegans obviously increased, while IL-6 mRNA levels significantly increased in M. sinensis. In addition, Bip and IRE1 levels in M. sinensis showed a marked increase, and were significantly higher than that in T. s. elegans. Bcl-2 and Bcl-xL transcriptional levels in T. s. elegans showed an increase, especially Bcl-xL were significantly higher than that in M. sinensis. These results indicated that T. s. elegans exhibited more stronger antioxidant defense and immune function than M. sinensis under ammonia exposure. M. sinensis was more likely to occur endoplasmic reticulum stress and inflammation in ammonia environment. This research reveals the physiological response of turtles to ammonia, helps to understand adverse effects of environmental pressure on aquatic turtles, and further explains the tolerance of invasive species T. s. elegans to environmental pollution.


Turtles , Animals , Ammonia/toxicity , Introduced Species , Antioxidants , RNA, Messenger
12.
Sci Rep ; 14(1): 1273, 2024 01 13.
Article En | MEDLINE | ID: mdl-38218897

The ongoing challenges of climate change and pollution are major factors disturbing ecosystems, including aquatic systems. They also have an impact on gene regulation and biochemical changes in aquatic animals, including fish. Understanding the mechanisms of gene regulation and biochemical changes due to climate change and pollution in aquatic animals is a challenging task. However, with this backdrop, the present investigation was conducted to explore the effects of arsenic (As) and ammonia (NH3) toxicity and high-temperature (T) stress on gene regulation and biochemical profiles, mitigated by dietary manganese (Mn) in Pangasianodon hypophthalmus. The fish were exposed to different combinations of As, NH3, and T, and fed with dietary Mn at 4, 8, and 12 mg kg-1 to evaluate the gene expression of immunity, antioxidative status, cytokine, and NfKB signaling pathway genes. HSP 70, cytochrome P450 (CYP 450), metallothionein (MT), DNA damage-inducible protein (DDIP), caspase (CAS), tumor necrosis factor (TNFα), toll-like receptor (TLR), interleukin (IL), inducible nitric oxide synthase (iNOS), catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were noticeably highly upregulated by As + NH3 + T stress, whereas Mn diet at 8 mg kg-1 downregulated these genes. Further, total immunoglobulin (Ig), myostatin (MYST), somatostatin (SMT), growth hormone (GH), growth hormone regulator 1 and ß, insulin-like growth factors (IGF1X1 and IGF1X2) were significantly upregulated by Mn diets. The biochemical profiles were highly affected by stressors (As + NH3 + T). The bioaccumulation of arsenic in different tissues was also notably reduced by Mn diets. Furthermore, the infectivity of the fish was reduced, and survival against pathogenic bacteria was enhanced by Mn diet at 8 mg kg-1. The results of the present investigation revealed that dietary Mn at 8 mg kg-1 controls gene regulation against multiple stressors (As, NH3, As + NH3, NH3 + T, As + NH3 + T) in fish.


Arsenic , Manganese , Animals , Manganese/toxicity , Arsenic/toxicity , Ammonia/toxicity , Temperature , Ecosystem , Antioxidants/metabolism , Diet , NF-kappa B/metabolism , Nutrients , Growth Hormone/metabolism , Oxidative Stress , Animal Feed/analysis
13.
PeerJ ; 12: e16786, 2024.
Article En | MEDLINE | ID: mdl-38250716

The Chinese mitten crab (Eriocheir sinensis) is an important commercial species in China. E. sinensis is typically farmed in rice-crab symbiosis, as an important ecological farming model. However, E. sinensis is often exposed to a high ammonia environment due to the application of nitrogen fertilizers essential for rice growth. We investigated the molecular mechanisms in the gills of E. sinensis exposed to high ammonia at transcriptional and histological levels. We randomly assigned E. sinensis to two groups (control group, CG; ammonia stress group, AG), and gill samples were excised from the CG and AG groups for histopathological and transcriptome analyses. The histopathological evaluation revealed that ammonia stress damaged the gills of E. sinensis. The transcriptome analysis showed that some essential genes, including Xanthine dehydrogenase (XDH), Ubiquitin C-terminal hydrolase-L3 (UCHL3), O-linked N-acetylglucosamine transferase (OGT), Cathepsin B (CTSB), and Ubiquitin-conjugating enzyme E2 W (UBE2W) changed significantly during ammonia exposure. These genes are related to ammonia detoxification, the immune response, and apoptosis. This study demonstrated the molecular response mechanism of E. sinensis gills to ammonia stress at the transcriptional and histological levels. This study provides insight for further study on the molecular mechanism of ammonia stress in crustaceans and supplies technical support for rice crab symbiosis.


Ammonia , Lice Infestations , Animals , Ammonia/toxicity , Gills , Durable Medical Equipment , Gene Expression Profiling
14.
Ecotoxicol Environ Saf ; 271: 115949, 2024 Feb.
Article En | MEDLINE | ID: mdl-38219616

Ammonia is a common toxicant in aquatic systems and one of the key factors affecting aquaculture. However, data on mollusks' toxic response and coping mechanisms to ammonia nitrogen, especially freshwater mollusks, are still lacking. In this study, we evaluated the tolerance of a freshwater mollusk Solenaia oleivora to ammonia and investigated its coping mechanisms by combining physiological, metabolic, and transcriptomic analyses in the gills. The acute toxicity test revealed that the LC50-96 h (temperature-20 â„ƒ, pH-7.4) of ammonia in S. oleivora was 63.29 mg/L. The physiological and TUNEL results showed that although 10 mg/L ammonia exposure increased the activities of antioxidant, immune and ammonia detoxification-related enzymes, it still caused oxidative damage and cell apoptosis of gill tissues. A total of 97 differential metabolites (DMs) and 3431 differential expressed genes (DEGs) were identified after ammonia stress. Among them, most DMs and DEGs were involved in immune response, antioxidant, cell apoptosis, carbohydrate metabolism, amino acid metabolism, and lipid metabolism. The enhancement of glycolysis and lipid metabolisms may provide energy for immune response and ammonia detoxification. In addition, glutamine synthesis, alanine synthesis and urea cycle were involved in ammonia nitrogen detoxification in the gill tissue of S. oleivora. Our results indicate that ammonia leads to individual death in S. oleivora, as wells as oxidative damage, cell apoptosis, immune response, and metabolic changes of gill tissues. The findings will provide valuable information to assess the potential ecological risk of environmental ammonia to freshwater mollusks and theoretical guidance for the healthy aquaculture of S. oleivora.


Transcriptome , Unionidae , Animals , Gills/metabolism , Ammonia/toxicity , Ammonia/metabolism , Antioxidants/metabolism , Metabolome , Unionidae/metabolism , Nitrogen/metabolism
15.
Aquat Toxicol ; 267: 106837, 2024 Feb.
Article En | MEDLINE | ID: mdl-38228042

The role of endoplasmic reticulum (ER) stress, Ca2+ homeostasis, and fatty acid metabolism in the environmental adaptation of aquatic animals is significant, but further confirmation of the relationship between these factors is needed. This study aimed to investigate the responses and correlations among ER stress, Ca2+ homeostasis, and fatty acid metabolism in Penaeus vannamei under ammonia stress. A total of 640 P. vannamei weighing 3.0 ± 0.4 g were selected and exposed to different total ammonia concentrations (0 mg/L for the control group and 3.80, 7.60, and 11.40 mg/L for the stress groups). The experiment involved a 96 h ammonia stress period to assess indicators related to ER stress, Ca2+ homeostasis, and fatty acid metabolism. The experimental results revealed that after 12 h, exposure to ammonia induced the ER stress response in the hepatopancreas of the shrimp. The groups exposed to concentrations of 3.8 mg/L and 7.6 mg/L exhibited an increase in ER Ca2+ efflux, a decrease in influx, an elevation in mitochondrial Ca2+ influx, an enhanced energy demand within the organism, and substantial consumption of triglycerides. The 11.3 mg/L group exhibited a significant enhancement in fatty acid metabolism. At 24 h, the ER stress response induced by ammonia in the shrimp exhibited a gradual recovery. In the 7.6 mg/L and 11.3 mg/L groups, the ER Ca2+ influx and efflux exhibited significant enhancements, while the mitochondrial Ca2+ influx decreased and the organism's energy demand increased. Moreover, there was a substantial enhancement in fatty acid metabolism. At 48 h, the ER stress response disappeared in each stress group, ER Ca2+ efflux was reduced, triglycerides were consumed, and the body's energy homeostasis was basically restored. At 96 h, a stress response reoccurred in the ER in each stress group, resulting in increased influx of Ca2+ into the ER, augmented energy demand within the organism, and notable enhancement in fatty acid metabolism. Pearson correlation analysis revealed a significant positive correlation between the NH3-N content in the hepatopancreas and the expression of ER stress-related genes, as well as between ER Ca2+ influx/efflux and energy homeostasis/fatty acid metabolism. The findings indicate that the stress induced by ammonia triggers an ER stress response in P. vannamei, resulting in ER Ca2+ efflux and mitochondrial Ca2+ influx, which, in turn, enhances fatty acid metabolism to generate additional energy for adaptation in stressful environments. This study contributes to a deeper understanding of the environmental adaptability of P. vannamei in the context of Ca2+ homeostasis.


Penaeidae , Water Pollutants, Chemical , Animals , Penaeidae/metabolism , Ammonia/toxicity , Ammonia/metabolism , Water Pollutants, Chemical/toxicity , Triglycerides/metabolism , Homeostasis , Fatty Acids/metabolism
16.
Biotechnol Bioeng ; 121(3): 980-990, 2024 Mar.
Article En | MEDLINE | ID: mdl-38088435

Bacteria capable of direct ammonia oxidation (Dirammox) play important roles in global nitrogen cycling and nutrient removal from wastewater. Dirammox process, NH3 → NH2 OH → N2 , first defined in Alcaligenes ammonioxydans HO-1 and encoded by dnf gene cluster, has been found to widely exist in aquatic environments. However, because of multidrug resistance in Alcaligenes species, the key genes involved in the Dirammox pathway and the interaction between Dirammox process and the physiological state of Alcaligenes species remain unclear. In this work, ammonia removal via the redistribution of nitrogen between Dirammox and microbial growth in A. ammonioxydans HO-1, a model organism of Alcaligenes species, was investigated. The dnfA, dnfB, dnfC, and dnfR genes were found to play important roles in the Dirammox process in A. ammonioxydans HO-1, while dnfH, dnfG, and dnfD were not essential genes. Furthermore, an unexpected redistribution phenomenon for nitrogen between Dirammox and cell growth for ammonia removal in HO-1 was revealed. After the disruption of the Dirammox in HO-1, more consumed NH4 + was recovered as biomass-N via rapid metabolic response and upregulated expression of genes associated with ammonia transport and assimilation, tricarboxylic acid cycle, sulfur metabolism, ribosome synthesis, and other molecular functions. These findings deepen our understanding of the molecular mechanisms for Dirammox process in the genus Alcaligenes and provide useful information about the application of Alcaligenes species for ammonia-rich wastewater treatment.


Ammonium Compounds , Ammonium Compounds/metabolism , Alcaligenes/genetics , Alcaligenes/metabolism , Ammonia/toxicity , Ammonia/metabolism , Wastewater , Nitrogen/metabolism , Denitrification , Oxidation-Reduction , Bioreactors
17.
Sci Total Environ ; 912: 169036, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38061639

Ammonia (NH3) is an irritating gas and atmospheric pollutant that endangers the health of humans and animals by stimulating respiratory tract's mucosa and causing liver damage. However, physiological role of ammonia gas in hepatotoxicity remains unclear. To investigate the hepatotoxic effects of inhaled ammonia gas, experiments were conducted using mouse model exposed to 100 ppm of ammonia gas for 21 days. The exposed mice exhibited signs of depression, emaciation, and reduced growth. This study revealed that inhalation of ammonia led to significant decrease in water (P < 0.0001) and food intake (P < 0.05), resulting in slower growth. Histopathological analysis showed that ammonia stress alters the microstructure of the liver by enlarging the gap between hepatic lobule and fibrosis. Moreover, ammonia-induced stress significantly reduces the expression of the anti-apoptotic protein BCl-2 (P < 0.001), while elevates the mRNA expression of the pro-apoptotic gene Bax (P < 0.001). Furthermore, ammonia inhalation significantly increases the protein expression of LC-3bII (P < 0.05) and the mRNA expression of autophagy-related gene 5 (ATG5) (P < 0.05) and p62 (P < 0.05) while remarkably decreases the mRNA expression of mammalian target of rapamycin (m-TOR) (P < 0.05). In conclusion, this study demonstrates that inhalation of ammonia gas causes liver damage and suggests autophagy happening via m-TOR/p62/LC-3bII and pro-apoptosis effect mediated by Bax/BCl-2 in the liver damage caused by ammonia inhalation. Our study provides a new perspective on ammonia-induced hepatotoxicity.


Ammonia , Chemical and Drug Induced Liver Injury , Humans , Mice , Animals , bcl-2-Associated X Protein , Ammonia/toxicity , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/pharmacology , Apoptosis , Hepatocytes , RNA, Messenger , Chemical and Drug Induced Liver Injury/pathology , Autophagy , Mammals/metabolism , Autophagy-Related Protein 5/pharmacology
18.
Article En | MEDLINE | ID: mdl-38013044

Ammonia is an environmental pollutant that is toxic to all aquatic animals. However, the mechanism of ammonia toxicity toward the ion regulatory function of early-stage fish has not been fully documented. We addressed this issue using zebrafish embryos as a model. We hypothesized that ammonia might impair ion regulation by inducing oxidative stress, mitochondrial dysfunction, and cell death of epidermal ionocytes and keratinocytes in zebrafish embryos. After exposure to various concentrations (10- 30 mM) of NH4Cl for 96 h, mortality increased up to 50 % and 100 % at 25 and 30 mM, respectively. Whole-embryo sodium, potassium, and calcium contents decreased at ≥10 mM, suggesting dysfunction of ion regulation. Numbers of H+-ATPase-rich (HR) cells and Na+/K+-ATPase-rich (NaR) cells (two ionocyte subtypes) were not significantly altered at 15 or 20 mM, while the mitochondrial abundance significantly decreased and reactive oxygen species (ROS) levels significantly increased in ionocytes. Moreover, caspase-3-dependent apoptosis was found in epidermal keratinocytes. Whole-embryo transcript levels of several genes involved in ion regulation, antioxidation, and apoptosis were upregulated after ammonia exposure. In conclusion, ammonia exposure was shown to induce oxidative stress and mitochondrial dysfunction in ionocytes and apoptosis in keratinocytes, thereby impairing ion regulation and ultimately leading to the death of zebrafish embryos.


Mitochondrial Diseases , Zebrafish , Animals , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Ammonia/toxicity , Ammonia/metabolism , Mitochondrial Diseases/metabolism , Embryo, Nonmammalian/metabolism
19.
Environ Pollut ; 342: 123021, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-37995953

The ecological risk posed by MCs-producing M. aeruginosa and elevated ammonia to fish in actual aquatic environments remains uncertain. To address this knowledge gap, we conducted simulations to investigate the endocrine-reproductive toxicity of prolonged exposure (45 d) to Microcystis aeruginosa (2 × 10^6 cells/mL) and 30 mg/L total ammonia nitrogen (TAN) in zebrafish under environmentally relevant conditions. Our results showed that exposure to M. aeruginosa significantly inhibited the body weight, increased gonadosomatic index (GSI), delayed oocyte development, and disrupted endocrine hormonal balance (reduced gonadotropin-releasing hormone (GnRH), and increased estradiol (E2) and testosterone (T)). Mechanistically, it should be attributed to the over-expression of hypothalamic-pituitary-gonadal-liver (HPGL) axis-related genes (cyp11a and cyp17) induced by M. aeruginosa. On the other hand, TAN exposure caused mild damage to zebrafish ovarian tissue and promoted an increase of T levels by inducing the upregulation of steroid hormone synthesis gene (3ßhsd) expression in the ovary. It is worth noting that the dysregulation of E2/T ratio in zebrafish ovaries may be attributed to the inhibition of cyp19a1a by both M. aeruginosa and TAN. These results were further confirmed by changes in steroidogenic enzymes activities in the M. aeruginosa or TAN treated groups. Our findings indicated that exposure to M. aeruginosa and TAN had adverse impacts on the reproductive system of zebrafish. And the combined exposure of M. aeruginosa and TAN had more severe effects on the body weight, GSI, pathological changes, hormone levels and HPGL-axis related gene expression in female zebrafish. These results provide compelling evidence regarding the potential risks for reproductive health associated with M. aeruginosa and TAN in eutrophic water bodies experiencing M. aeruginosa blooms, and contribute to the development of effective strategies for monitoring and managing these toxins in aquatic ecosystems.


Microcystis , Water Pollutants, Chemical , Animals , Female , Zebrafish/metabolism , Microcystis/metabolism , Ammonia/toxicity , Ammonia/metabolism , Ecosystem , Reproduction , Estradiol/metabolism , Body Weight , Water Pollutants, Chemical/metabolism
20.
Chem Res Toxicol ; 37(1): 117-125, 2024 01 15.
Article En | MEDLINE | ID: mdl-38146714

Ammonia (NH3) is a commonly used industrial chemical to which exposure at high concentrations can result in severe skin damage. Moreover, high levels of ammonia in the human body can lead to hyperammonemia conditions and enhanced cancer metabolism. In this work, the toxicity mechanism of NH3 has been studied against human dermal fibroblast (HDF) cells using surface-enhanced Raman spectroscopy (SERS). For this purpose, gold nanoparticles of size 50 nm have been prepared and used as probes for Raman signal enhancement, after being internalized inside HDF cells. Following the exposure to ammonia, HDF cells showed a significant variation in the protein ternary structure's signals, demonstrating their denaturation and oxidation process, together with early signs of apoptosis. Meaningful changes were observed especially in the Raman vibrations of sulfur-containing amino acids (cysteine and methionine) together with aromatic residues. Fluorescence microscopy revealed the formation of reactive oxygen and nitrogen species in cells, which confirmed their stressed condition and to whom the causes of protein degradation can be attributed. These findings can provide new insights into the mechanism of ammonia toxicity and protein oxidation at a single-cell level, demonstrating the high potential of the SERS technique in investigating the cellular response to toxic compounds.


Metal Nanoparticles , Neoplasms , Humans , Gold/chemistry , Ammonia/toxicity , Spectrum Analysis, Raman/methods , Metal Nanoparticles/chemistry
...